MONNA, a potent and selective blocker for transmembrane protein with unknown function 16/anoctamin-1.
نویسندگان
چکیده
Transmembrane protein with unknown function 16/anoctamin-1 (ANO1) is a protein widely expressed in mammalian tissues, and it has the properties of the classic calcium-activated chloride channel (CaCC). This protein has been implicated in numerous major physiological functions. However, the lack of effective and selective blockers has hindered a detailed study of the physiological functions of this channel. In this study, we have developed a potent and selective blocker for endogenous ANO1 in Xenopus laevis oocytes (xANO1) using a drug screening method we previously established (Oh et al., 2008). We have synthesized a number of anthranilic acid derivatives and have determined the correlation between biological activity and the nature and position of substituents in these derived compounds. A structure-activity relationship revealed novel chemical classes of xANO1 blockers. The derivatives contain a --NO₂ group on position 5 of a naphthyl group-substituted anthranilic acid, and they fully blocked xANO1 chloride currents with an IC₅₀ < 10 μM. The most potent blocker, N-((4-methoxy)-2-naphthyl)-5-nitroanthranilic acid (MONNA), had an IC₅₀ of 0.08 μM for xANO1. Selectivity tests revealed that other chloride channels such as bestrophin-1, chloride channel protein 2, and cystic fibrosis transmembrane conductance regulator were not appreciably blocked by 10∼30 μM MONNA. The potent and selective blockers for ANO1 identified here should permit pharmacological dissection of ANO1/CaCC function and serve as potential candidates for drug therapy of related diseases such as hypertension, cystic fibrosis, bronchitis, asthma, and hyperalgesia.
منابع مشابه
MONNA, a Potent and Selective Blocker for Transmembrane Protein with Unknown Function 16/Anoctamin-1 s
Transmembrane protein with unknown function 16/anoctamin-1 (ANO1) is a protein widely expressed in mammalian tissues, and it has the properties of the classic calcium-activated chloride channel (CaCC). This protein has been implicated in numerous major physiological functions. However, the lack of effective and selective blockers has hindered a detailed study of the physiological functions of t...
متن کاملRole of anoctamin-1 and bestrophin-1 in spinal nerve ligation-induced neuropathic pain in rats
BACKGROUND Calcium-activated chloride channels (CaCCs) activation induces membrane depolarization by increasing chloride efflux in primary sensory neurons that can facilitate action potential generation. Previous studies suggest that CaCCs family members bestrophin-1 and anoctamin-1 are involved in inflammatory pain. However, their role in neuropathic pain is unclear. In this investigation we a...
متن کاملPresynaptic Localization and Possible Function of Calcium-Activated Chloride Channel Anoctamin 1 in the Mammalian Retina
Calcium (Ca(2+))-activated chloride (Cl(-)) channels (CaCCs) play a role in the modulation of action potentials and synaptic responses in the somatodendritic regions of central neurons. In the vertebrate retina, large Ca(2+)-activated Cl(-) currents (ICl(Ca)) regulate synaptic transmission at photoreceptor terminals; however, the molecular identity of CaCCs that mediate ICl(Ca) remains unclear....
متن کاملApoptotic effect of morphine, imiquimod and nalmefene on promastigote , infected and uninfected macrophages with amastigote of Leishmania major by flow cytometry
The parasites of genus Leishmania are the causative agents of one of the most widespread and devastating diseases. According to follow-up data, these medications may provoke adverse drug reactions, drug resistance, relapse as well as financial burden. The mechanism of action of opioid drugs are primarily exerted via transmembrane G-protein coupled receptors. One of the potent synthetic immunomo...
متن کاملApoptotic effect of morphine, imiquimod and nalmefene on promastigote , infected and uninfected macrophages with amastigote of Leishmania major by flow cytometry
The parasites of genus Leishmania are the causative agents of one of the most widespread and devastating diseases. According to follow-up data, these medications may provoke adverse drug reactions, drug resistance, relapse as well as financial burden. The mechanism of action of opioid drugs are primarily exerted via transmembrane G-protein coupled receptors. One of the potent synthetic immunomo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 84 5 شماره
صفحات -
تاریخ انتشار 2013